Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design and Development of 25% Post-Industrial Recycled SMC Hood Assembly for the 1998 Lincoln Continental Program

1998-02-23
981019
This paper describes the process of incorporation of 25% post-industrial recycled sheet molded composite (SMC) material in the 1998 Continental Hood inner. 1998 Continental Hood assembly consists of traditional SMC outer and this recycled hood inner along with three small steel reinforcements. BUDD Plastics collects SMC scraps from their manufacturing plants. The scrap is then processed and made into fillers for production of SMC. Strength of SMC comes from glass fibers and fillers are added to produce the final mix of raw materials. This recycled material is approximately 10% lighter and less stiff than the conventional virgin SMC. This presented unique challenges to the product development team to incorporate this material into a production vehicle in order to obtain the desired goal of reducing land fill and improving the environment.
Technical Paper

Design, Testing and Operation of Porous Media for Dehumidification and Nutrient Delivery in Microgravity Plant Growth Systems

2003-07-07
2003-01-2614
Porous plate dehumidifiers (PPD) and porous tube nutrient delivery systems (PTNDS) are designed to provide a means for accurate environmental control, and also allow for two-phase flow separation in microgravity through surface tension. The technological challenges associated with these systems arise from the requirement to accurately measure and control the very small pressures that typically occur within and across the porous media. On-orbit automated priming or filling of the system in the absence of gravity may be necessary. Several porous plate dehumidifiers and porous tube nutrient delivery systems have been tested and evaluated, and experimental results for engineering design are presented.
Technical Paper

Detailed Experimental Results of Drag-Reduction Concepts on a Generic Tractor-Trailer

2005-11-01
2005-01-3525
The 1/8-scale Generic Conventional Model was studied experimentally in two wind tunnels at NASA Ames Research Center. The investigation was conducted at a Mach number of 0.15 over a Reynolds number range from 1 to 6 million. The experimental measurements included total and component forces and moments, surface pressures, and 3-D particle image velocimetry. Two configurations (trailer base flaps and skirts) were compared to a baseline representative of a modern tractor aero package. Details of each configuration provide insight into the complex flow field and the resulting drag reduction was found to be sensitive to Reynolds number.
Technical Paper

Detailed Hydrocarbon Species and Particulate Emissions from a HCCI Engine as a Function of Air-Fuel Ratio

2005-10-24
2005-01-3749
Concentrations of individual species in the engine-out exhaust gas from a gasoline-fueled (101.5 or 91.5 RON), direct-injection, compression-ignition (HCCI) engine have been measured by gas chromatography over the A/F range 50 to 230 for both stratified and nearly homogeneous fuel-air mixtures. The species identified include hydrocarbons, oxygenated organic species, CO, and CO2. A single-cylinder HCCI engine (CR = 15.5) with heated intake charge was used. Measurements of the mass and size distribution of particulate emissions were also performed. The 101.5 RON fuel consisted primarily of five species, simplifying interpretation of the exhaust species data: iso-pentane (24%), iso-octane (22%), toluene (17%), xylenes (10%), and trimethylbenzenes (9%).
Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

2009-04-20
2009-01-1172
Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Technical Paper

Development of a Computationally Efficient Progress Variable Approach for a Direct Injection Stochastic Reactor Model

2017-03-28
2017-01-0512
A novel 0-D Probability Density Function (PDF) based approach for the modelling of Diesel combustion using tabulated chemistry is presented. The Direct Injection Stochastic Reactor Model (DI-SRM) by Pasternak et al. has been extended with a progress variable based framework allowing the use of a pre-calculated auto-ignition table. Auto-ignition is tabulated through adiabatic constant pressure reactor calculations. The tabulated chemistry based implementation has been assessed against the previously presented DI-SRM version by Pasternak et al. where chemical reactions are solved online. The chemical mechanism used in this work for both, online chemistry run and table generation, is an extended version of the scheme presented by Nawdial et al. The main fuel species are n-decane, α-methylnaphthalene and methyl-decanoate giving a size of 463 species and 7600 reactions.
Technical Paper

Development of a Pilot Scale Apparatus for Control of Solid Waste Using Low Temperature Oxidation

2007-07-09
2007-01-3135
In February 2004 NASA released “The Vision for Space Exploration.” The important goals outlined in this document include extending human presence in the solar system culminating in the exploration of Mars. Unprocessed waste poses a biological hazard to crew health and morale. The waste processing methods currently under consideration include incineration, microbial oxidation, pyrolysis and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this project is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. In the Phase I project, TDA Research, Inc. demonstrated the potential of a low temperature oxidation process using ozone. In the current Phase II project, TDA and NASA Ames Research Center are developing a pilot scale low temperature ozone oxidation system.
Technical Paper

Development of the Standard Interface Glovebox (SIGB) for use on Shuttle, MIR, and International Space Station

1997-07-01
972310
An innovative design that meets both Shuttle and Space Station requirements for a user-friendly, volume-efficient, portable glovebox system has been developed at Ames Research Center (ARC). The Standard Interface Glovebox (SIGB) has been designed as a two Middeck locker-sized system that mounts in a Middeck Rack Structure (MRS) or in any rack using the Standard Interface Rack (SIR) rail spacing. The MRS provides structural support for the SIGB during all aspects of the mission and is an interface consistent with NASA's desire for commonality of mechanical interfaces, allowing the SIGB to be flown on essentially any manned space platform. The SIGB provides an enclosed work volume which operates at negative pressure relative to ambient, as well as excellent lighting and ample work volume for anticipated life sciences-related experiment operations inflight.
Technical Paper

Developments of Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) Project

2022-03-29
2022-01-0341
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project that developed structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components were selected for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

Die Wear Severity Diagram and Simulation

2007-04-16
2007-01-1694
Die wear is a significant issue in sheet metal forming particularly for stamping Advanced High-Strength Steels (AHSS) because of their higher strength and microstructure composition. Reliable predictions of the magnitude and distribution of die wear are essential if cost-effective wear-protection strategies are desired in the early stages of tooling development. A die Wear Severity Index (WSI) is introduced in this paper to quantify the magnitude of die wear, which in essence characterizes the frictional energy dissipation per unit area on the die surface throughout the entire forming cycle. It can be readily obtained as part of any finite element simulation of stamping process utilizing incremental solution techniques.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Drawbead Restraining Force Modeling: Nonlinear Friction

2009-04-20
2009-01-1391
A detailed investigation of influence of friction on drawbead restraining force modeling is presented in this paper. It is motivated by the need to accurately correlate line bead strengths, which are usually the output of an optimized draw development for controlling materials flow and achieving desired formability, and the physical drawbead geometries required for die face engineering. A plane-strain drawbead model with linear Coulomb friction is first established and the restraining forces corresponding to a range of bead penetration depths are obtained. The comparison of the simulation results with experimental data indicates that, while a larger Coefficient of Friction (COF) has better correlation for smaller bead penetrations and smaller COF does better for deeper bead penetrations, no single COF matches satisfactorily for overall range of bead penetration depths.
Technical Paper

Driver Identification Using Vehicle Telematics Data

2017-03-28
2017-01-1372
Increasing number of vehicles are equipped with telematics devices and are able to transmit vehicle CAN bus information remotely. This paper examines the possibility of identifying individual drivers from their driving signatures embedded in these telematics data. The vehicle telematics data used in this study were collected from a small fleet of 30 Ford Fiesta vehicles driven by 30 volunteer drivers over 15 days of real-world driving in London, UK. The collected CAN signals included vehicle speed, accelerator pedal position, brake pedal pressure, steering wheel angle, gear position, and engine RPM. These signals were collected at approximately 5Hz frequency and transmitted to the cloud for offline driver identification modeling. A list of driving metrics was developed to quantify driver behaviors, such as mean brake pedal pressure and longitudinal jerk. Random Forest (RF) was used to predict driver IDs based on the developed driving metrics.
Technical Paper

Dynamic Characterization of Wet Friction Component under Realistic Transmission Shift Conditions

2006-04-03
2006-01-0151
A wet friction component continues to play a critical role in a step-ratio automatic transmission (AT) system. It is hydraulically actuated to alter planetary gear configurations for automatic shifting. During a shift event, its engagement torque is transmitted to AT output shaft, directly affecting vehicle shift quality. The friction component behaviors vary widely under different conditions. In a vehicle development process, unanticipated behaviors often lead to an inefficient trial-and-error approach for adjusting shift feel. Thus, a shift improvement process can benefit from upfront characterization of friction component behaviors. The so-called SAE#2 test system has served as the industry-standard since 1960's for evaluating friction components. It provides a useful means for evaluating friction component design variables. However, its standardized test conditions do not adequately capture dynamic effects of AT shift control variables.
Technical Paper

Dynamic Particulate Measurements from a DISI Vehicle: A Comparison of DMS500, ELPI, CPC and PASS

2006-04-03
2006-01-1077
A Cambustion Differential Mobility Spectrometer (DMS500), Dekati Electrical Low Pressure Impactor (ELPI), TSI Condensation Particle Counter (CPC) and AVL Photo-Acoustic Soot Sensor (PASS) were compared for measurements of emitted Particulate Matter (PM) from a Direct Injection Spark Ignition (DISI) vehicle on the New European Drive Cycle (NEDC) and at steady speed operating points. The exhaust was diluted in a Constant Volume Sampler (CVS) before being measured. Transient size spectral data from the DMS500 and ELPI is presented. PM Number rate and total PM number emissions are presented for the DMS500, ELPI and CPC. The DMS500 and ELPI data are post-processed for PM mass, and presented with data from the PASS. The instrument responses were correlated against each other. Qualitative agreement was generally found between all instruments. The agreement was closer for PM mass measurements than for measurements of PM number.
Technical Paper

Dynamometer Development of a Lightly Stratified Direct Injection Combustion System

2004-03-08
2004-01-0547
This paper describes the dynamometer development of a lightly stratified direct-injection spark-ignition engine. The engine was designed for stratified charge operation at speeds and loads below 2000 RPM, 2 bar BMEP. Test results detailed in this report include evaluation of part-load stratified-charge, part-load homogeneous-charge, and WOT operation. The program had aggressive goals in improving WOT performance and part-load fuel consumption compared to a baseline PFI engine while meeting Stage V emissions levels. Mini-map analysis of the engine data indicated that the engine was able to meet the emissions and fuel consumption goals.
Technical Paper

Effect of Cooling Time on Fracture Toughness at the Simulated HAZ of DP600 Steels

2004-03-08
2004-01-0165
In this study, the Gleeble test was used to investigate the effect of cooling time, which is an indication of welding heat input, on fracture toughness at the simulated HAZ of different test materials, including one mild steel and three DP600 steels from three different suppliers. One of the important findings is that the three DP600 steels have similar tensile properties and similar base metal microstructures. After different simulated welding thermal cycles, however, the microstructure, the microhardness and thus the fracture toughness of the simulated HAZ of the steels showed significant variations among the steels tested, which indicates that DP600 steels from different suppliers can have different responses to the welding heat input.
Technical Paper

Effect of Engine Motion on the Fatigue Life of Cooling Components

2017-03-28
2017-01-0337
Ensuring durability is one of the key requirements while developing cooling modules for various powertrains. Typically, road surface induced loads are the main driving force behind mechanical failures. While developing the components, road load accelerations are utilized in CAE simulations to predict the high-stress regions and estimate the fatigue life of the components mounted on the body. In certain scenarios where components are mounted to the body and attached to the engine with hoses, the components can experience additional loads associated with engine vibration. This attachment scheme requires a different analysis methodology to determine fatigue life. In the proposed paper, we look at the effect of engine motion (EM) on the fatigue life of internal transmission oil cooler (ITOC) which is mounted on the body through radiator and is simultaneously connected to the engine using a steel pipe. We propose a new CAE methodology taking into account the engine motion displacements.
Technical Paper

Effect of Materials Stack-ups and Microhardness Distribution on Fatigue Performance of DP600 and Boron Steel GMAW Lap Joint

2007-04-16
2007-01-1356
With the increasing demand for safety, energy saving and emission reduction, Advanced High Strength Steels (AHSS) have become very attractive materials for automobile makers. The usage of AHSS materials is projected to grow significantly in the next 5-10 years with new safety and fuel economy regulations. These new materials have significant manufacturing challenges, particularly for welding and stamping. Welding of AHSS remains one of the technical challenges in the successful application of AHSS in automobile structures, especially when durability of the welded structures is required. In this study, 2.0 mm uncoated DP600 and 2.0 mm uncoated boron (heat treated) steel lap joint configuration was investigated. Metallurgical properties of the DP600 to boron steel dissimilar steel lap joints were evaluated using optical microscopy. Static and fatigue tests were conducted on these joints.
Technical Paper

Effect of Materials Stack-ups on Fatigue Performance of DP780 and Aluminized Coated Boron Steel GMAW Lap Joint

2007-04-16
2007-01-0634
In this study, fatigue performance of Gas Metal Arc Welded (GMAW) joint for 1.5 mm uncoated DP780 and 1.0 mm and aluminized coated boron (or USIBOR) steel was investigated. Metallurgical properties of DP780 to coated boron steel dissimilar steel lap joints were evaluated using optical microscopy. Microhardness traverse, static and fatigue tests were conducted on these joints. Finite element analysis (FEA) was used to identify the stress distribution of the weld joints with different stack-ups and at same loading conditions. It was found that position of the material (top or bottom in lap joint configuration) had a significant impact on fatigue performance of the dissimilar joint. The amount of heat introduced by welding to coated boron steel is also believed to be important to the fatigue performance of the dissimilar joints. The findings in this study can be used when aluminized boron steel is involved in dissimilar steel and dissimilar thickness GMAW lap joint design.
X